
1 

NASA TECHNICAL N O T E  D-4391 
*-- 

ELASTIC-PLASTIC TORSION PROBLEM 
FOR STRAIN-HARDENING MATERIALS 

by A Zexunder M endelson 

Lewis Reseurch Center 
C Zeve Zund, Ohio 

N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. F E B R U A R Y  1968 



TECH LIBRARY KAFE, NM 

ELASTIC-PLASTIC TORSION PROBLEM FOR 

STRAIN-HARDENING MATERIALS 

By Alexander Mendelson 

Lewis Research  Center 
Cleveland, Ohio 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific ond Technical  Information 
Springfield, Virginia 22151 - CFSTI price $3.00 



ELASTIC-PLASTIC TORSION PROBLEM FOR 

S TR A 1 N -HA R DEN I N G MATE R I A L S 

by Alexander Mende l  son  

Lewis Research Cen te r  

SUMMARY 

A simple and straightforward procedure is presented for  solving the elastic-plastic 
problem for the torsion of a solid prismatic ba r  made of a strain-hardening material .  
The procedure is based on the method of "successive elastic solutions" o r  successive 
approximations. 
nonlinear algebraic equation. For the case of a circular c r o s s  section with linear s t ra in  
hardening, the solution is obtained in closed form.  Results a r e  presented for  ba r s  of 
rectangular and circular  cross sections with l inear s t ra in  hardening. 

For circular c ross  sections, the problem reduces to the solution of a 

INTRODUCTION 

Although the problem of elastic torsion of prismatic ba r s  is one of the classical  
problems of mechanics and has received extensive treatment,  the corresponding problem 
of elastic-plastic torsion has as yet not been satisfactorily attacked. 

The usual solutions to the plastic torsion problem assume perfectly plastic mater ia ls  
and a r e  generally limited to cases  in which the complete c ros s  section is plastic, because 
the elastic-plastic boundary is considered difficult to find. Furthermore,  for  completely 
plastic sections of b a r s  made of perfectly plastic mater ia ls ,  the ingenious sand-hill 
analogy of Nsdai (ref. 1) enables one to obtain solutions experimentally. Examples of 
solutions of this type can be found in  references 1 to 5. An example of a solution for  a 
strain-hardening mater ia l  can be found in reference 6 for  a special  type of s t ress -s t ra in  
law. 

This report  presents  a relatively simple solution to the elastic-plastic torsion 
problem for  strain-hardening materials.  Use is made of the method of successive elastic 
solutions fo r  successive approximations which have been applied so  successfully to many 
other types of problems as described in references 7 to  10, among others.  For the 



practical  and important case of a bar  of c i rcular  c ros s  section, the problem reduces to 
the solution of a nonlinear algebraic equation. For l inear s t ra in  hardening, the solution 
is obtained in closed form.  

METHOD OF ANALYSIS 

Basic Equations 

The analysis begins with the Saint-Venant semi-inverse method as for  the elastic 
case.  Consider a prismatic bar  subjected to a twisting couple as shown in figure 1. One 
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I ' z  
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Figure 1. - Prismatic bar subject to twist ing couple. 

end of the bar  is assumed fixed against rotation but not against  warping, and, at the other 
end, a couple M with moment along the z-axis is applied. Following Saint-Venant, i t  
is assumed that the displacements in the x, y, and z directions, respectively, a r e  
given by 

where a is the angle of twist per unit length. 
The warping function w is directly proportional to the angle of twist per unit length a 
in the elastic case.  

Substituting equations (1) into the usual s t ra in  -displacement relations resul ts  in 

(All symbols a r e  defined in appendix A. ) 

For the plasticity problem this is, in general, no longer true. 
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all the other s t ra ins  being zero.  If equations (2) are now substituted into Saint-Venant's 
six compatibility equations, four of them are identically satisfied and the remaining two 
become 

which gives 

ax ay 

From equations (2), it follows that the constant appearing in equation (4) must equal 2a. 
Hence, 

ax a Y  

Equation (5) is the compatibility equation for  this problem. 
The only equilibrium equation not satisfied identically is 

ar a rxz + y z = o  
ax a Y  

(5) 

The s t ress -s t ra in  relations can be written 
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(7) 

where y$ and yp 
tion (7) into equation (5) yields the compatibility equation in t e rms  of the stresses 

are the total accumulated plastic shear  strains.  Substituting equa- 
YZ 

---- - 2Ga + g(x,y) YZ 
a 7  

ax ay 

where 

The s t r e s s  function q is now introduced such that 

Then the equilibrium equation (6) is identically satisfied, and the compatibility equa- 
tion (8) becomes 

For the e las t ic  problem g(x,y) is equal to zero.  

that the lateral surface is force free. As shown in any standard text this becomes simply 
The boundary condition for  this problem can be obtained directly from the condition 

on the boundary, provided that the section is simply connected. For multiply-connected 
c ros s  sections, the stress function cp is equal to a different constant on each boundary. 
We will concern ourselves here  only with simply connected sections, that is, solid bars .  
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From equation (10) it follows that the resultant shear  stress is equal to the gradient 
of c p ;  that is, 

.- 

The resultant moment can readily be found by integration to be 

The elastic-plastic torsion problem has thus been reduced to solving equation (ll), 
subject to boundary condition (12). 
equation (11) is a constant, and solutions, at least for  simple shapes, can readily be 
obtained. 
plastic s t ra ins  and is therefore unknown until the solution is obtained. To solve the 
problem, use is made of the method of successive elastic solutions or successive approx- 
imations. 

Before proceeding with the details of the solution, the following should be noted: 
A s  shown in reference 11, both the total and incremental theories of plasticity furnish 
the same solution to the torsion problem provided either (1) the c ross  section is circular ,  
or  (2) the material  is perfectly plastic. It is reasonable to assume,  therefore, that this 
will be approximately true for  most  practical  problems. Indeed, it has been shown in 
reference 6 that for  the case of a square c ross  section with s t ra in  hardening there is 
little difference between total and incremental theories. In what follows, therefore, use 
w i l l  be made of the total o r  deformation theories of plasticity and the load wi l l  be as- 
sumed to be applied in one step. The use of incremental theories does not appreciably 
complicate the problem, and the necessary formulation is given in appendix B for  those 
who desire  to use it. 

For the elasticity problem, the right side of 

For the plasticity problem, the right side of equation (11) is a function of the 

The deformation theory of plasticity using the von Mises yield cri terion resul ts  in 
the following plastic s t ra in  - total s t ra in  relations as shown in reference 7 .  

> 

where 

E 
yp =P xz yxz 
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P 

and the equivalent plastic s t ra in  E 

the s t ress -s t ra in  curve of the mater ia l  and can be written, in general, as 
is related to the equivalent total s t ra in  through 

P 

E = f(Et) 
P 

These plasticity relations will now be used fo r  obtaining a solution by successive 
approximations. 

Method of Solution 

It is convenient to introduce the following dimensionless quantities: 

M u - ' p  P - e  M*-  
3 2GeOa €0 2GeOa 

E 

et - 
€0 €0 

e G P  
P i 
- - 'xz 7 =- ' YZ 7x - - 

2Gc0 2Ge0 

5'- X , , Y  
a a 

where 
tensile test ,  related to each other by oo = Ee0, and a is a characterist ic dimension of 
the c ross  section. 

and a. are the yield s t ra in  and yield stress, respectively, in the uniaxial 

The system of equations to be solved for  a simply connected cross section can now 
be written as follows: 
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2 v u = - P - g( t .  d 

U = 0 on boundary 

2 2 2  

e = F(et) P 

The successive approximation method proceeds in the following manner. The 
plastic s t ra ins  a r e  assumed to be zero everywhere. Equation (19b) is solved by any 
available method. The stresses, the total s t ra ins ,  and equivalent total and plastic 
s t ra ins  are computed by means of equations (19c) to (19f) with the help of the stress- 
s t ra in  curve. If, at any point in  the c ros s  section, the equivalent plastic s t ra in  as 
computed from equation (19f) is negative, this point is in the elastic region, and the 
plastic s t ra ins  at this point are set equal to zero.  
plastic s t ra ins  a r e  calculated by means of equations (19g). 
tion (19a), and the process  is repeated until the difference between two successive 
iterations differs by less than some preassigned value. 
in, convergence was obtained very rapidly. A discussion of the convergence of this 
technique for  other types of problems can be found in  references 7 and 8. The method 
will be illustrated fo r  b a r s  of rectangular and circular c ros s  sections. For a circular 
c ross  section with linear s t ra in  hardening, the solution can be obtained in closed form. 

Otherwise, new approximations to the 
One then returns  to equa- 

For all the cases treated here-  
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Bar With Rectangular Cross Section 

Equation (19b) is the well-known Poisson equation of mathematical physics which can 
be solved by a variety of methods. Herein the finite-difference method is used because it 
is simple and straightforward and is readily programmed for  a digital computer. 

Consider a bar of rectangular c ross  section as shown in figure 2. Note first that, 
because of symmetry,  only one quadrant of the section need be considered. 
square c ros s  section, the diagonals a r e  also l ines of symmetry,  and only one octant is 
used. The quadrant is divided into a grid of nXm points as shown in figure 3. At each 
of the grid points such as the point designated by (i, j )  equation (19b) is written in finite 
difference form 

For a 

where h is the constant grid spacing divided by the half width of the plate a and is the 
same in both the x and y directions, and 

P P 
i, j + l  - yx, i, j - 1  - yy, i+l, j + $, i-1, j 2h 

An equation such as equation (20) can be written for  each of the mn grid points 
resulting in a set of mn simultaneous linear equations for  the unknown values of U 
at each of the points. Actually, the number of equations to be solved is (m - 1) (n - 1) 
rather  than mn, since the boundary conditions require  U to be zero at the upper and 

Figure 2. - Rectangular cross section. 
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Figure 3. - Finite-difference gr id for one quadrant of 
rectangle. 



right hand boundaries of the quadrant. 
onal and to the right of the diagonal (or left) need be considered, resulting in 1/2n(n - 1) 
equations. 

For  a square section, only the points on the diag- 

Along the lower boundary, because of symmetry,  equation (20) becomes 

4ui, 1 = - ( P  + gi, p12 

Along the left boundary, 

ul, j - 1 +  ui, j + l  + 2U2, j - 4Ui, = - (P  + gi, j)h2 

at the center, 

2ui+l, i + 2ui, i-1 - 

Once the values of U are determined at all the grid points, corresponding values of 
plastic s t ra ins  are computed by means of equations (19c) to (19g). The g. . are then 
recomputed, and equations (19b) a r e  solved again. The process  is repeated until con- 
vergence is obtained. An example using this technique is described in the section 
RESULTS AND DISCUSSION. 

1, J 

Bar With C i r c u l a r  Cross Section 

For  a bar  with a circular  c ros s  section, the solution is greatly simplified. In 
particular,  for the case of linear s t ra in  hardening, a closed-form solution can be ob- 
tained. In polar coordinates, the displacements are 
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r 

ue = arz 

and the only nonzero s t ra in  is 

Y e z  = ar 

The s t ress -s t ra in  relation can therefore be written 

1 
G 
- T~~ = ar - yp oz 

The von Mises equivalent s t r e s s  reduces to 

ue = f i 7 0 z  = G G a r  - 

and the equivalent plastic s t ra in  is 

Hence, 

Let 

oe = @Gar - 3G€ 
P 

0 e -  
2GeO - ‘e -- 

where a is the radius of the bar .  
form as 

Then equation (27) can be written in dimensionless 

(24) 

s =  fl pp - 3 ep 
e 2  2 
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The s t ress-s t ra in  curve equation can be written in dimensionless form as 

Se = f(e ) 
P 

and combining with equation (29) resul ts  in 

P' 
which can be solved iteratively for  e 

p = pc and p = 1. 
E = 0 when 0 = cro or when P e 

i 
Equation (31) is valid only in the plastic region. Let this region extend between 

To determine the position of the elastic-plastic boundary pc, let  
Y 

Hence, from equation (29), 

which depends only on Poisson's ra t io  p and the yield s t ra in  but not on the s t r e s s -  
s t ra in  curve. The value of p at which plastic flow just  starts is found from equa- 
tion (32) by setting pc equal to l .  Thus, the cr i t ical  value of p will be 

2(1 + PI- & =  * 
and the cri t ical  angle of twist per  unit length will  be 

c 

or  

E 

(3 3) 

(34) 

In summary, the strain-hardening solution is found as follows: The elastic-plastic 
boundary pc is first determined from equation (32). 
elastic region for p 5 pc are then computed from equations (23) and (24) with y i z  s e t  
equal to zero.  In the plastic region p > pc equation (31) is usually solved by a n  

The s t r e s s  and s t ra in  in the 
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iterative method. Then, y& can be computed from equation (26), and the shear  stress 
from equation (24). Once the shear  stress is known throughout the section, the torque 
can be computed by integration. 

s t ress -s t ra in  curve, can be written as follows: 
Let us  now consider the case of l inear strain-hardening. Equation (30) for the 

S, = ( 1 +  p) 1 + -  e 
1 - m  p) 

(where the strain-hardening parameter  m is the rat io  of the slope of the linear 
hardening curve to the slope of the elastic curve). Hence, equation (31) becomes 

2 ( 1 +  p) ( 1 + - -" PJ = f i B P  - 3ep 

or 

1 - m  

Note that the cr i t ical  value of p is obtained when the numerator of equation (36) 
vanishes, which resu l t s  again in  equation (32). 

s t ra in  and the stress are computed from equations (26) and (24). 
solution in closed form is obtained. To compute the torque, define 

Once the equivalent plastic s t ra in  is known from equation (36), the plastic shear  
Thus, a complete 

T~ = T 8z /2Ge0 

Then, 

1 
M* = M/2GeOa3 = 2 r l  rep2 dp 

and substituting 

1 
2 

ra = - Pp P 5 Pc 

(35) 

1 

(37) 

3 

1 
2 .  

r8 = - ~p - e: p L pc 
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resul ts  in  

where 

1 - m  

Note that for  pc = 1 (no plastic flow) the torque reduces to the elastic torque as given 
in standard texts. For  a perfectly plastic material  

and 

o r  

and the classical  solution as given in reference 2 is recovered. 

RESULTS AND DISCUSSION 

Calculations were performed by the above techniques for  two illustrative cases: The 
case of a ba r  of square c ros s  section and the case of a bar  of c i rcular  c ross  section. A 
value of 0.3 was used for  Poisson's ra t io  fo r  all calculations. For  the square c ross  
section, the finite-difference solution previously described was used with an 11 by 11 
grid as shown in figure 3. As a check on the accuracy of the finite-difference formula- 
tion, the resul ts  of the elastic solution which were obtained from the first iteration are 
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shown in the following table. These resul ts  are compared with those of reference 12. 

T,,/Go!a 

M/Go!a4 

Reference 12 

1.351 

2 .250  

Finite 
differences 

1.343 

2 .244  

.589 

It is seen  that the solution with this many grid points is sufficiently accurate.  

For  linear s t ra in  hardening, equation (19f) can be written as 
The elastic-plastic calculations were performed assuming linear s t ra in  hardening. 

T 

3 1 - m  

where the strain-hardening parameter m is the rat io  of the slope of the linear s t ra in-  
hardening curve to the slope of the elastic curve. 
is equal to 0 and, for the elastic case, m is equal to 1. 
effects of the strain-hardening parameter and the angle of twist on the maximum stress, 

For  the perfectly plastic case, m 
Figures 4 to 7 show the 

Strain- / 

Dimensionless angle of twist per unit length.  p 

Figure 4. - Variation of dimensionless maximum shear stress wi th 
dimensionless angle of twist per unit length for several values of  
strain-hardening parameter for square cross section. 
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3.; 

B 
c 
c 

2.1 
E 
Ln 
Ln a, 

c 0 

c 

- 
._ 
Ln 1.f 

2 ._ 
a 

. E  

1 2 3 4 5 6 
Dimensionless angle of twist per u n i t  length, p 

Figure 5. - Variation of dimensionless maximum plastic 
shear strain w i th  dimensionless angle of twist per 
u n i t  length for several values of strain-hardening 
parameter for square cross section. 

- 

- hardening Strain- / 
Darameter. / 

0 1 2 3 4 5 6 
Dimensionless angle of twist per unit length, p 

Figure 6. - Variation of dimensionless moment w i th  dimensionless 
angle of twist per unit length for several values of the strain- 
hardening parameter for square cross section. 
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TABLE I. - S U M W Y  O F  RJ3SULTS FOR TORSION O F  

~ 

Linear 
strain- 

hardening 
parameter, 

m 

0 

0.05 

0.10 

0.20 

SQUARE PRISMATIC BAR 

Dime nsionles E 
angle of twist 

per  unit 
length, 

P 
___ 

2 
3 
4 
5 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

~ 

Dimensionless 
torque, 

M* 

1.786 
1.918 
1.955 
1.977 

1.813 
1.997 
2.094 
2.166 
2.228 

1.838 
2.073 
2.223 
2.347 
2.465 

1.890 
2.220 
2.471 
2.717 
2.966 

__ 

Maximum 
limensionless 
shear  stress, 

'max 

0.751 

1 
0.785 

.825 

.862 

.899 

.934 

0.818 
.893 
.963 

1.032 
1.099 

0.881 
1.022 
1.156 
1.290 
1.426 

Maximum 
iim ensionles s 

strain,  

%ax 

0.820 
1.824 
2.851 
3.959 

0.758 
1.623 
2.434 
3.240 
4.003 

0.7015 
1.478 
2.209 
2.919 
3.618 

0.600 
1.250 
1.870 
2.488 
3.116 

.. 

I' 

Figure 7. - Plastic zone boundaries i n  quadrant of square 
cross section as funct ion of dimensionless angle of twist  
per u n i t  length for strain-hardening parameter, 0.1. 

16 



the maximum plastic strain,  the torque, and the s ize  of the plastic zone. The results 
are also summarized in table I. 

The results of the computations for a circular c ross  section are shown in figures 8 
Linear s t ra in  hardening was assumed, and equations (32), (23), (24), (36), (26), to 10. 

and (38) were used. 
Figure 9 shows the effect of the strain-hardening parameter on the shear  s t r e s s  for  
p = 5.0,  and figure 10 shows the relation between these parameters  and the torque. The 
corresponding quantities for  the other values of m and p can easily be computed. 

problem can be obtained in a relatively simple and straightfonvard manner. It is not 
necessary to assume that there is perfect plasticity o r  that the complete section has 

Figure 8 shows the elastic-plastic boundary as a function of p. 

It is seen f rom the preceding discussion that solutions to the elastic-plastic torsion 
C. 

v 

20 

18 

16 

a 

5 14 
m c W - - .- 
5 
L 
W a - LA ._ 
? 
0 
W 
cn 
CI m 

- 

2 
W 

CI 
0 

LA lx 

- 
.- 

._ F 
a 

0 

- 

- 

- 

- 

12- 

10- 

8- 

6- 

4- 

2-  

1 I I I 
. 2  .4 . 6  .8  1.0 1.2 
Dimensionless elastic-plastic boundary, pc 

Figure 8. - Variation of dimensionless elastic-plastic boundary 
w i th  dimensionless angle of twist per unit length for c i rcu la r  
cross section. 
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r" 1 . 2 1  

1 

Strain -hardening 
parameter, 

m 

0.20 -\ 

1 I 1 I ! 

c : q .8 

I I I I ._ 
n 

0 . 2  . 4  .6 . a  1.0 
Dimensionless radius,  p 

Figure 9. - Variation of dimensionless shear stress with 
dimensionless radius i n  c i rcular cross section for 
various values of strain-hardening parameter. 
Dimensionless angle of twist per u n i t  length. 5.0. 

UI 
UI a, 

c 
0 
UI 
c 
a, 

- 
._ 

E 
n 
.- 

Stra in-hardening 
parameter, 

m / 

yielded. 
and does not pose any special difficulties in its determination. 

The elastic -plastic boundary is found automatically as par t  of the calculation 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 4, 1967, 
129-03-08-04-22. 
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APPENDIX A 

SYMBOLS 

M* 

m 

r 

'e 

U 

P 

constants 

characterist ic dimension 
of c ros s  section 

"dimensionless" s t ra in  

shear  modulus 

plastic s t ra in  function 

torque acting on c ross  
sect ion 

dim ens ionle s s tor que, 
eq. (18) 

linear s t ra in  - har de ning 
paran: e t e r  

radial  coordinate of 
circular c ross  section 

dim ens ionles s equi - 
valent s t r  es s 

dimensionless stress 
function, eq. (18) 

displacements 

coordinates 

angle of twist per unit 
length 

dimensionless angle of 
twist per  unit length, 
eq- (18) 

y x z ,  yyz, ye, 

Y,, Yy' Y, "dimensionless" shear  

engineering shear  s t ra ins  

s t ra ins ,  eq. (18) 

P 

cp 

Subscripts: 

C 

e 

i, j 

P 

r 

t 

e 
0 

Superscripts: 

P 

s t ra in  

Poisson's ra t io  

dimensionless coor- 
dinates, eq. (18) 

dimensionless radius, 
eq. (28) 

stress 

resultant shear  stress 

shear  s t r e s ses  

dimensionless shear  
stresses, eq. (18) 

stress function 

critical 

equivalent 

station index 

equivalent plastic 

radial  

equivalent tota 1 

tangential 

yield 

plastic 
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APPENDIX B 

INCREMENTAL PLASTICITY EQUATIONS 

If the incremental or  flow theories of plasticity are to be used, the angle of twist 
per  unit length a must be increased in small  steps and the same calculation as pre-  
viously described performed after each step. The s t ress -s t ra in  relations (eq. (7)) are 
written as follows: 

- 1 P P Y,, - - Txz + Y,, 4- AYm 
G 

- 1 + A y p  
yyz - ryz + yyz YZ 1 I 

where y:, and yp 
the present increment of load, and A y,, and A yp 

s t ra ins  due to the current  increment of load. 
now bec om e s  

are the accumulated plastic shear  s t ra ins  up to, but not including, 
YZ P are the increments of plastic shear  YZ 

The equation for  the s t r e s s  function cp 

(42) 2 v cp = -2G(a + A a )  - g(x,y) - Ag 

where g(x, y) is as previously defined, and 

(43) 

g(x,y) is known, and Ag is to be determined. Equations (15) to (17) a r e  replaced by 
the following: 

20 



where 

- .  
3 E de 

P 

e = , i q ~ j  
where ue, appearing in equation (47), is the value at the end of the previous increment 
of load and is known. 
s t ra in  curve at the end of the previous increment of load and is known. Equation (47) 
is approximate except for linear s t ra in  hardening when it is exact and can be written as 

Similarly, doe/de is the slope obtained from the uniaxial stress- P 

2 1 + p  Et --- 

1 + -  (l+p)- 

'e 
A €  = -  E 

P 2 m 
3 1 - m  

(49) 

The problem can now be solved for  each increment of load by successive approxima- 
tion as described in  detail in references 8 and 9. For a given increment A a ,  values 
of AYE, and Ayp (such as zero) a r e  assumed. Eauation (42) is now solved for cp 
since Ag (as well as g(x, y)) is known. The s t r e s ses  can be computed from equa- 
tions (lo), the s t ra ins  from equation (41), the modified total s t ra ins  from equations (46), 
et from equation (45), AE from equation (47), and new values of AyZz and Ayp 

from equation (44). 
is obtained. 

YZ 

P YZ 
Then, Ag is recomputed and the process repeated until convergence 

By the above process,  the plastic shear increments can readily be obtained for  each 
increment of load. However, as previously pointed out, such an incremental process is 
not necessary for circular c ross  sections o r  any cross  sections of perfectly plastic 
materials.  
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